Foamy virus envelope glycoprotein-mediated entry involves a pH-dependent fusion process.
نویسندگان
چکیده
In general, enveloped viruses use two different entry strategies and are classified accordingly into pH-dependent and pH-independent viruses. Different members of the retrovirus family use one or the other strategy. Little is known about the uptake of foamy viruses (FV), a special group of retroviruses, into the target cells. In this study, we examined the pH dependence of FV entry by analyzing FV envelope glycoprotein (Env)-mediated infection of target cells with murine leukemia virus or FV vector pseudotypes in the presence of various lysosomotropic agents. Similar to vesicular stomatitis virus glycoprotein G (VSV-G)-mediated uptake, FV Env-mediated entry was inhibited by various lysosomotropic agents, suggesting a pH-dependent endocytic pathway. However, in contrast to its effect on VSV-G pseudotypes, chloroquine failed to reduce the infectivity of FV Env pseudotypes, implying that the pathway is different from that of VSV-G. Glycoproteins of various other FV species showed inhibition profiles similar to that of the prototype FV (PFV) Env. Analysis of the pH dependence of the FV Env-mediated fusion process in a cell-to-cell fusion assay revealed an induction of syncytium formation by a short exposure to acidic pH, peaking around pH 5.5. Interestingly, of all FV Env species analyzed, only the PFV Env had a significant fusion activity at neutral pH. Taken together, these data suggest a pH-dependent endocytic pathway for infection of target cells by FV.
منابع مشابه
Retroviral Entry Mediated by Receptor Priming and Low pH Triggering of an Envelope Glycoprotein
Avian leukosis virus (ALV) has been used as a model system to understand the mechanism of pH-independent viral entry involving receptor-induced conformational changes in the viral envelope (Env) glycoprotein that lead to membrane fusion. Here, we report the unexpected finding that ALV entry depends on a critical low pH step that was overlooked when this virus was directly compared to the classi...
متن کاملLow-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes.
There is controversy as to whether the cell entry mechanism of Sindbis virus (SIN) involves direct fusion of the viral envelope with the plasma membrane at neutral pH or uptake by receptor-mediated endocytosis and subsequent low-pH-induced fusion from within acidic endosomes. Here, we studied the membrane fusion activity of SIN in a liposomal model system. Fusion was followed fluorometrically b...
متن کاملAcidic pH-Induced Conformations and LAMP1 Binding of the Lassa Virus Glycoprotein Spike.
Lassa virus is an enveloped, bi-segmented RNA virus and the most prevalent and fatal of all Old World arenaviruses. Virus entry into the host cell is mediated by a tripartite surface spike complex, which is composed of two viral glycoprotein subunits, GP1 and GP2, and the stable signal peptide. Of these, GP1 binds to cellular receptors and GP2 catalyzes fusion between the viral envelope and the...
متن کاملBiochemical Reconstitution of Hemorrhagic-Fever Arenavirus Envelope Glycoprotein-Mediated Membrane Fusion
The membrane-anchored proteins of enveloped viruses form labile spikes on the virion surface, primed to undergo large-scale conformational changes culminating in virus-cell membrane fusion and viral entry. The prefusion form of these envelope glycoproteins thus represents an important molecular target for antiviral intervention. A critical roadblock to this endeavor has been our inability to pr...
متن کاملAmino acids from both N-terminal hydrophobic regions of the Lassa virus envelope glycoprotein GP-2 are critical for pH-dependent membrane fusion and infectivity.
Lassa virus glycoprotein 2 (LASV GP-2) belongs to the class I fusion protein family. Its N terminus contains two stretches of highly conserved hydrophobic amino acids (residues 260-266 and 276-298) that have been proposed as N-terminal or internal fusion peptide segments (N-FPS, I-FPS) by analogy with similar sequences of other viral glycoproteins or based on experimental data obtained with syn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 77 8 شماره
صفحات -
تاریخ انتشار 2003